1,149 research outputs found

    The role of inspections in the commercial kangaroo industry

    Get PDF
    This article provides an assessment of the enforcement of the law governing commercial kangaroo killing, focusing particularly upon inspectorial practices. Australias kangaroo industry is the largest commercial kill of land-based wildlife in the world. Professional shooters hunt kangaroos in rural and remote locations at night. Due to the remote and decentralised nature of the killing, the industry presents unique challenges to law enforcement agencies that are responsible for the enforcement of animal welfare standards. This article focuses upon the role that inspections have in detecting offences within the commercial kangaroo industry. It provides a comparative analysis across the states, highlighting key differences in terms of inspectorial practices and the resulting outcomes. A common theme across all of the jurisdictions is that none of the agencies responsible for enforcement regularly conduct inspections of shooters, making it impossible to ensure that these parties are complying with the National Code of Practice for the Humane Shooting of Kangaroos and Wallabies. Recommendations for reform are offered, including stronger compliance policy, higher rates of inspection, increased resourcing and the introduction of alternative methods of inspection

    Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C plus O star without a GRB

    Get PDF
    An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN 2004aw is shown not to be ‘broad-lined’, contrary to previous claims, but rather a ‘fast-lined’ SN Ic. The spectral resemblance to the narrow-lined Type Ic SN 1994I, combined with the strong nebular [O I] emission and the broad light curve, points to a moderately energetic explosion of a massive C+O star. The ejected 56Ni mass is ≈0.20 M⊙. The ejecta mass as constrained by the models is ∼3–5 M⊙, while the kinetic energy is estimated as EK ∼3–6 × 1051 erg. The ratio EK/M⊙, the specific energy that influences the shape of the spectrum, is therefore ≈1. The corresponding zero-age main-sequence mass of the progenitor star may have been ∼23–28 M⊙. Tests show that a flatter outer density structure may have caused a broad-lined spectrum at epochs before those observed without affecting the later epochs when data are available, implying that our estimate of EK is a lower limit. SN 2004aw may have been powered by either a collapsar or a magnetar, both of which have been proposed for gamma-ray burst SNe. Evidence for this is seen in the innermost layers, which appear to be highly aspherical as suggested by the nebular line profiles. However, any engine was not extremely powerful, as the outer ejecta are more consistent with a spherical explosion and no gamma-ray burst was detected in coincidence with SN 2004aw

    Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study

    Get PDF
    Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon. <br><br> Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest. <br><br> This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s<sup>−1</sup>, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude

    Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

    Full text link
    We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.Comment: Post-proof edit. Accepted to MNRAS 2015 Aug 1

    First impressions and perceived roles: Palestinian perceptions on foreign aid

    Get PDF
    This paper summarizes some results of a wider research on foreign aid that was conducted in the West Bank and Gaza Strip in 2010. It seeks to describe the impressions and feelings of Palestinian aid beneficiaries as well as the roles and functions they attached to foreign aid. To capture and measure local perceptions on Western assistance a series of individual in depth interviews and few focus group interviews were conducted in the Palestinian territories. The interview transcripts were processed by content analysis. As research results show — from the perspective of aid beneficiaries — foreign aid is more related to human dignity than to any economic development. All this implies that frustration with the ongoing Israeli-Palestinian conflict inevitably embraces the donor policies and practices too

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL

    Get PDF
    We present new Hubble Space Telescope (HST) multi-epoch ultraviolet (UV) spectra of the bright Type IIb SN 2013df, and undertake a comprehensive analysis of the set of four SNe IIb for which HST UV spectra are available (SN 1993J, SN 2001ig, SN 2011dh, and SN 2013df). We find strong diversity in both continuum levels and line features among these objects. We use radiative-transfer models that fit the optical part of the spectrum well, and find that in three of these four events we see a UV continuum flux excess, apparently unaffected by line absorption. We hypothesize that this emission originates above the photosphere, and is related to interaction with circumstellar material (CSM) located in close proximity to the SN progenitor. In contrast, the spectra of SN 2001ig are well fit by single-temperature models, display weak continuum and strong reverse-fluorescence features, and are similar to spectra of radioactive 56Ni-dominated SNe Ia. A comparison of the early shock-cooling components in the observed light curves with the UV continuum levels which we assume trace the strength of CSM interaction suggests that events with slower cooling have stronger CSM emission. The radio emission from events having a prominent UV excess is perhaps consistent with slower blast-wave velocities, as expected if the explosion shock was slowed down by the CSM that is also responsible for the strong UV, but this connection is currently speculative as it is based on only a few events

    Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations

    Get PDF
    There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. By coadding these images taken prior to the explosion in time bins, we search for precursor events. We find five Type IIn SNe that likely have at least one possible precursor event, three of which are reported here for the first time. For each SN we calculate the control time. Based on this analysis we find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, more than 50% of SNe IIn have at least one pre-explosion outburst that is brighter than absolute magnitude -14, taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely larger than one per year, and fainter precursors are possibly even more common. We also find possible correlations between the integrated luminosity of the precursor, and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap

    The rise and fall of the Type Ib supernova iPTF13bvn - Not a massive Wolf-Rayet star

    Get PDF
    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g′r′i′z′) and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 M⊙ and the radioactive nickel mass to be 0.05 M⊙. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r′-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars. Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 M⊙
    • …
    corecore